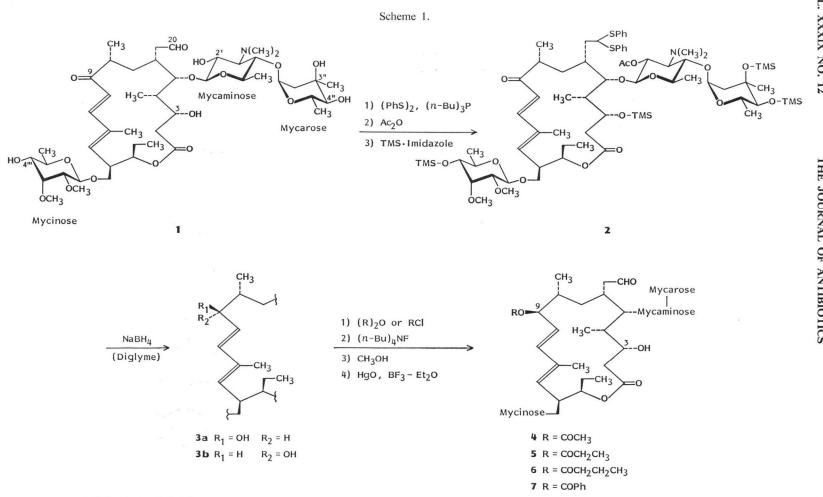
SYNTHESES AND ANTIMICROBIAL ACTIVITIES OF 9-O-ACYL DERIVATIVES OF TYLOSIN AND DEMYCAROSYLTYLOSIN

Sir:

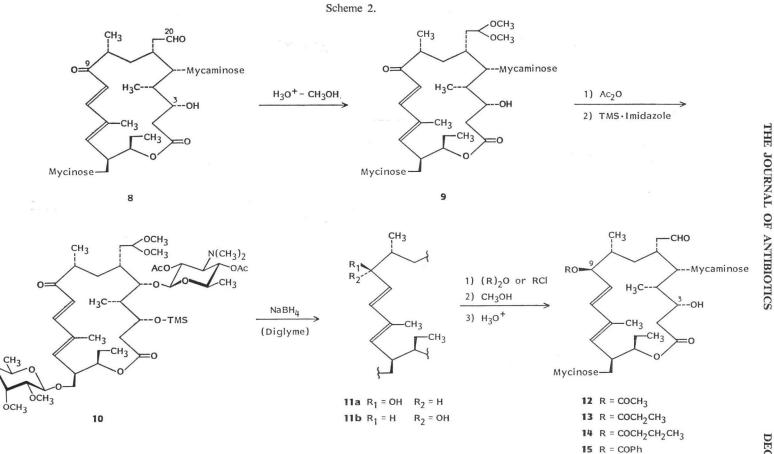
In the course of our studies^{1~3)} on the structure-activity relationship of tylosin (1), which has a potent antimicrobial activity against Grampositive bacteria and mycoplasma, some 9-Oacyl derivatives of 1 and demycarosyltylosin (8) were found to possess *in vitro* activity comparable to 1. Further, 9-O-propionyl-9-dihydrotylosin, among the derivatives, exhibited excellent therapeutic effect in mice infected with *Streptococcus pyogenes*. In this communication we describe the syntheses of 9-O-acyl derivatives of 1 and 8 and their antimicrobial activities.


Proper protection of the formyl group at C-20 and several hydroxyl groups in 1 must be performed before the reduction of the carbonyl group at C-9 and subsequent acylation of the hydroxyl group at C-9. At first the formyl group was protected as a dithioacetal³⁾ as shown in Scheme 1. Acetylation of the 2'-hydroxyl group of the mycaminose moiety with acetic anhydride without external base, followed by silylation of the remaining hydroxyl groups with N-trimethylsilylimidazole in piperidine, afforded a fully protected compound, 2'-O-acetyl-3,3", 4",4"'-tetra-O-trimethylsilyltylosin diphenyl dithioacetal (2): $[\alpha]_D^{23} - 66^\circ$ (c 1, MeOH); EI(electron impact)-MS m/z 1,447 (M⁺) in 74% yield. The reduction of the carbonyl group at C-9 in 2 with sodium borohydride in diglyme afforded a mixture of isomeric allylic alcohols, 3a and 3b (3:1) in 64% yield. The use of protic solvents resulted in hydrolysis of silyl ethers. The configuration at C-9 of both epimers 3a and 3b could be assigned as 9S and 9R-isomers, respectively, from the coupling constants (3a; $J_{9,10}$ =4.0 Hz and **3b**; $J_{9,10} = 9.0$ Hz) between H-9 and H-10^{4,5)}. Acylation of the major allylic alcohol 3a with acid anhydrides such as acetic, propionic and butyric anhydride, or benzoyl chloride in pyridine, followed by the successive deprotections: (1) Removal of four O-trimethylsilyl groups at 3,3",4" and 4" positions by treatment with tetrabutylammonium fluoride in tetrahydrofuran; (2) removal of 2'-O-acetyl group by methanolysis at 50°C; (3) hydrolysis of dithioacetal group by treatment with mercury oxide (red) and boron

trifluoride etherate in 15% aq tetrahydrofuran³), afforded 9-O-acyl derivatives, $4 \sim 7$ [(9S)-9-Oacetyl-9-dihydrotylosin (4): $[\alpha]_{\rm D}^{23} - 64^{\circ}$ (c 1, MeOH); ¹H NMR δ 2.06 (9-OCOCH₃) and 5.74 ($J_{9,10}$ =3.0 Hz and $J_{10,11}$ =16.5 Hz, H-10), (9S)-9-O-propionyl-9-dihydrotylosin (5): $[\alpha]_{\rm D}^{23} - 80^{\circ}$ (c 1, MeOH); ¹H NMR δ 5.76 ($J_{9,10}$ =4.0 Hz and $J_{10,11}$ =16.0 Hz, H-10), (9S)-9-O-butyryl-9dihydrotylosin (6): $[\alpha]_{\rm D}^{23} - 72^{\circ}$ (c 1, MeOH); ¹H NMR δ 5.76 ($J_{9,10}$ =4.5 Hz and $J_{10,11}$ =16.0 Hz, H-10), (9S)-9-O-benzoyl-9-dihydrotylosin (7): $[\alpha]_{\rm D}^{23} - 47^{\circ}$ (c 1, MeOH); ¹H NMR δ 5.92 ($J_{9,10}$ =4.0 Hz and $J_{10,11}$ =16.0 Hz, H-10).

On the other hand, 9-O-acyl derivatives of 9dihydrodemycarosyltylosin were also prepared from 8 which was obtained by acidic hydrolysis of 1, as shown in Scheme 2, in a similar manner as the synthesis of 9-O-acyl-9-dihydrotylosins. Acetylation of demycarosyltylosin dimethylacetal (9) with acetic anhydride in chloroform, followed by silvlation with N-trimethylsilylimidazole in piperidine, provided 2',4'-di-O-acetyl-3,4"-di-O-trimethylsilyldemycarosyltylosin (10): EI-MS m/z 1,045 (M⁺); ¹H NMR δ 0.10, 0.17 $(3-OSi(CH_3)_3)$ and $4''-OSi(CH_3)_3$, respectively), 2.05 (2'-OCOCH₃ and 4'-OCOCH₃), 3.20 (20- $(OCH_3)_2$). Sodium borohydride reduction of 10 followed by acylation with acid anhydride (or acyl chloride) and then removal of O-trimethylsilyl and acetyl groups afforded (9S)-9-O-acyl-9-dihydrodemycarosyltylosin ($12 \sim 15$), [9-O - acetyl - 9 - dihydrodemycarosyltylosin (12): $[\alpha]_{D}^{28} - 47^{\circ}$ (c 1, MeOH); EI-MS m/z 797 (M⁺-18), 9-O-propionyl-9-dihydrodemycarosyltylosin (13): $[\alpha]_{\rm D}^{28}$ -53° (c 1, MeOH); EI-MS m/z 639 (M⁺-mycaminose), 9-O-butyryl-9-dihydrodemycarosyltylosin (14): $[\alpha]_{D}^{28}$ -52° (c 1, MeOH); EI-MS m/z 653 (M⁺-mycaminose), 9-Obenzoyl-9-dihydrodemycarosyltylosin (15): $[\alpha]_D^{21}$ -38° (c 1, MeOH); EI-MS m/z 756 (M⁺- $OCOC_6H_5)].$

The *in vitro* antimicrobial activities of the 9-Oacyl derivatives of 1 and 8 together with 9epimers, 3a and 3b are shown in Table 1. The configurational difference of the hydroxyl group at C-9 in 3a and 3b did not affect antimicrobial activity. The antimicrobial activities of 9-Oacyl derivatives were almost the same as those of the corresponding parent compounds 1 and 8.


The *in vivo* activities of 9-O-acyl derivatives was tested in mice infected with *S. pyogenes* C-203 and the results are shown in Table 2.

1785

THE JOURNAL OF ANTIBIOTICS

TMS-0

Table 1. Antimicrobial activities of tylosin (1), 9-dihydrotylosins (3a and 3b), demycarosyltylosin (8) and their 9-O-acyl derivatives.

Test organisms	MIC (µg/ml)					
Test organisms	1	3a	3b	4	5	6
Staphylococcus aureus ATCC 6538P	0.78	1.56	1.56	1.56	0.78	1.56
Bacillus subtilis ATCC 6633	0.20	0.39	0.39	0.20	0.20	0.39
B. cereus IFO 3001	0.39	0.78	0.78	0.78	0.78	0.78
Micrococcus luteus ATCC 9341	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Escherichia coli NIHJ	100	>100	>100	>100	>100	>100
Klebsiella pneumoniae PCI 602	25	25	25	100	>100	100

Test sesserious	MIC (µg/ml)					
Test organisms	7	8	12	13	14	15
Staphylococcus aureus ATCC 6538P	0.78	3.12	1.56	1.56	1.56	1.56
Bacillus subtilis ATCC 6633	0.20	3.12	1.56	1.56	1.56	1.56
B. cereus IFO 3001	0.78	1.56	0.78	0.78	1.56	1.56
Micrococcus luteus ATCC 9341	<0.10	<0.20	0.20	0.20	0.20	0.20
Escherichia coli NIHJ	>100	>100	>100	>100	>100	>100
Klebsiella pneumoniae PCI 602	>100	>100	>100	>100	>100	>100

Test medium: Nutrient agar (Eiken).

Incubated at $37^{\circ}C$ for $18 \sim 20$ hours.

Table 2. In vivo mouse test of tylosin (1), demycarosyltylosin (8) and their 9-O-acyl derivatives.

Compound	ED ₅₀ (mg/kg) vs. <i>Streptococcus</i> <i>pyogenes</i> C-203 infection in mice			
	sc	ро		
1	1.0	50		
5	2.5	12.5		
7	>10	70.7		
8	0.8	80		
12	1.9	29		
13	5.4	39		
14	5.4	41		
15	>10	65		

Compounds 5 and 7 were less active than 1 subcutaneously. However, the ED_{50} value of compound 5 by oral administration was superior by about four times to that of 1. These results suggest that the size of the alkyl chain in *O*-acyl group at C-9 has little effect on the *in vivo* activity. On the other hand, the ED_{50} values of 9-*O*-acyl derivatives of 8 were lower than that of 8 in oral administration, but higher subcutaneously.

Kazuo Tsuzuki Hajime Matsubara Akira Nakagawa Satoshi Ōmura The Kitasato Institute and School of Pharmaceutical Sciences, Kitasato University, Minato-ku, Tokyo 108, Japan

(Received June 26, 1986)

References

- ÖMURA, S.; K. MIYANO, H. MATSUBARA & A. NAKAGAWA: Novel dimeric derivatives of leucomycin and tylosin, sixteen-membered macrolides. J. Med. Chem. 25: 271~275, 1982
- MATSUBARA, H.; K. MIYANO, A. NAKAGAWA & S. ŌMURA: Chemical modification of tylosin, a 16-membered macrolide, and its structureactivity relationship. Chem. Pharm. Bull. 30: 97~110, 1982
- OMURA, S.; H. MATSUBARA, K. TSUZUKI & A. NAKAGAWA: Chemical modification of tylosin. Thioether derivatives of tylosin and demycarosyltylosin. J. Antibiotics 37: 1007~1015, 1984
- FREIBERG, L.A.; R.S. EGAN & W.H. WASHBURN: The synthesis of 9-epileucomycin A₃. The revised configurational assignment of C-9 in natural leucomycin A₃. J. Org. Chem. 39: 2474~2475, 1974
- OMURA, S.; A. NAKAGAWA, M. MACHIDA & H. IMAI: Evidence for configurational identity between leucomycin and tylosin. Tetrahedron Lett. 1977: 1045~1048, 1977